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Abstract Coral reefs are enduring decline due to the

intensifying impacts of anthropogenic global change. This

widespread decline has resulted in increased efforts to

identify resilient coral populations and develop novel

restoration strategies. Paramount in these efforts is the need

to understand how environmental variation and thermal

history affect coral physiology and resilience. Here, we

assess the acclimatization capacity of Siderastrea siderea

and Pseudodiploria strigosa corals via a 17-month recip-

rocal transplant experiment between nearshore and off-

shore reefs on the Belize Mesoamerican Barrier Reef

System. These nearshore reefs are more turbid, eutrophic,

warm, and thermally variable than offshore reefs. All

corals exhibited some evidence of acclimatization after

transplantation. Corals transplanted from nearshore to

offshore calcified slower than in their native habitat,

especially S. siderea corals which exhibited 60% mortality

and little to no net growth over the duration of the

17-month study. Corals transplanted from offshore to

nearshore calcified faster than in their native habitat with

96% survival. Higher host tissue d15N in nearshore corals

indicated that increased heterotrophic opportunity or

nitrogen sources between nearshore and offshore reefs

likely promoted elevated calcification rates nearshore and

may facilitate adaptation in nearshore populations to such

conditions over time. These results demonstrate that off-

shore populations of S. siderea and P. strigosa possess the

acclimatization capacity to survive in warmer and more

turbid nearshore conditions, but that local adaptation to

native nearshore conditions may hinder the plasticity of

nearshore populations, thereby limiting their utility in coral

restoration activities outside of their native habitat in the

short term.
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Introduction

Coral reefs are facing unprecedented threats due to a

combination of global stressors (e.g., ocean warming and

acidification) coupled with local stressors (e.g., nutrient

and sediment loading) (Hoegh-Guldberg et al. 2007). Ris-

ing temperatures and coral bleaching (i.e., the breakdown

of the vital coral-Symbiodiniaceae partnership that sustains

reef-building corals) associated with this warming is

widely thought to be the biggest threat to the structure and

function of coral reefs (Hughes et al. 2017). As the com-

bined impacts of global and local stressors continue to

mount, corals and their associated microbial and Symbio-

diniaceae communities (collectively termed the ‘coral

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s00338-
021-02124-8.

Topic Editor: Anastazia Teresa Banaszak

& J. H. Baumann

j.baumann3@gmail.com

1 Department of Marine Sciences, The University of North

Carolina, Chapel Hill, USA

2 Biology Department, Bowdoin College, Brunswick, USA

3 Environment, Ecology, and Energy Program, The University

of North Carolina, Chapel Hill, USA

4 Fragments of Hope Ltd, Placencia, Belize

5 Department of Environmental, Earth, and Geospatial

Sciences, North Carolina Central University, Durham, USA

123

Coral Reefs

https://doi.org/10.1007/s00338-021-02124-8

http://orcid.org/0000-0003-0113-0491
https://doi.org/10.1007/s00338-021-02124-8
https://doi.org/10.1007/s00338-021-02124-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s00338-021-02124-8&amp;domain=pdf
https://doi.org/10.1007/s00338-021-02124-8


holobiont’) may struggle to persist under changing envi-

ronmental conditions predicted to occur with climate

change.

Acclimatization and adaptation are two possible path-

ways for the survival and success of the coral holobiont in

changing environmental conditions (Coles and Brown

2003). Acclimatization is a plastic change in the phenotype

of an organism over its lifetime using its existing genomic

repertoire (Baird et al. 2009; Liew et al. 2020; Ziegler et al.

2014), while adaptation is a change in the frequency of

alleles in a population over generations in response to

selection (Coles and Brown 2003). Corals exposed to more

environmental heterogeneity in-situ may possess greater

acclimatization potential to survive acute stress events

(e.g., coral bleaching) and a reduced incidence of coral

bleaching (Safaie et al. 2018). Acclimatization of the coral

holobiont in response to thermal stress is often driven by

changes in the Symbiodiniaceae and/or microbial com-

munity from more thermally sensitive species to more

thermally tolerant species (Howells et al. 2013; Jones et al.

2008; Ziegler et al. 2014). However, acclimatization can

also occur in the coral host, as corals living in warmer reef

environments have shown fewer signs of physiological

stress following exposure to acute temperature stress events

than corals living in cooler environments (Kenkel et al.

2013a; Manzello et al. 2018). Additionally, exposure to

high-frequency temperature variation has improved ther-

mal tolerance via acclimatization that exceeds the impact

of shifts to thermally tolerant Symbiodiniacea alone (Oli-

ver and Palumbi 2011). Mechanisms of acclimatization in

corals include: increased production of antioxidant

enzymes, heat shock proteins, or fluorescent proteins, DNA

methylation (epigenetic pathways), or other mechanisms of

physiological plasticity (Baird et al. 2009; Liew et al. 2020;

Ziegler et al. 2014). Understanding the environmental

drivers and limitations of physiological acclimatization in

thermally variable reefs is imperative to identify conser-

vation priorities as reef restoration efforts expand (Safaie

et al. 2018).

The acclimatization capacity of corals is constrained by

genotype. For example, corals that already live at their

absolute thermal maximum (i.e., * 34 �C in the Southern

Red Sea) show decreased capacity for physiological

acclimatization to warming (Sawall et al. 2015), suggesting

that absolute thermal maximums of modern corals can act

as a barrier to acclimatization (Howells et al. 2013).

Additionally, not all coral species are able to increase

thermal tolerance through acclimatization (Camp et al.

2016) and local adaptation to native thermal regimes over

generations can limit acclimatization potential as well

(Howells et al. 2013). Nonetheless, thermal tolerance

conferred via acclimatization in parent corals can be heri-

table (Putnam et al. 2018), indicating that corals that

survive stressful conditions and then reproduce may be

able to pass on advantages gained through acclimatization

to larvae, which may improve the capacity for thermal

tolerance of those species and reefs.

Many tropical coral reef environments that exhibit a

high degree of thermal variation are located proximal to the

coast in nearshore environments (Baumann et al. 2016;

Camp et al. 2016; Oliver and Palumbi 2011). While corals

can acclimatize to thermal stress and variation to a degree,

this acclimatization is likely hindered by variability of

other local scale factors, such as sedimentation, light

availability, and nutrient enrichment. In the Caribbean,

nearshore reefs are often degraded as a result of thermal

stress combined with local land-based stressors, such as

elevated sediment and nutrient concentrations (Baker et al.

2010; Baumann et al. 2016; Lapointe and Matzie 1996). As

a result of these stressors, nearshore environments often

exhibit lower coral diversity and cover than offshore reefs

(Baumann et al. 2016; Camp et al. 2016), with some

exceptions (Kenkel et al. 2015; McField et al. 2005). High

nutrient loads in these nearshore environments may also

lead to greater disease and bleaching incidence in corals

and promote macroalgal growth, negatively impacting

coral communities (Bellwood et al. 2004; Bruno et al.

2003; Lapointe et al. 2019). However, some nutrient

loading can be beneficial to corals, providing a source of

heterotrophic energy that results in increased growth rates

(Mills et al. 2004; Tambutté et al. 2011), as well as miti-

gating thermal and UV stress (Sawall et al. 2015). The

combined effects of increased temperature and nutrients on

corals appear to be species specific (Faxneld et al. 2011),

indicating that nearshore conditions may provide a bene-

ficial growth environment for some species and a detri-

mental one for others. In spite of their degraded state,

nearshore Caribbean reefs may harbor corals with a genetic

or physiological advantage that allows them to persist in

future ocean conditions, and corals from these reefs have

been targeted for use in coral restoration efforts (Bowden-

Kerby and Carne 2012; Morgan et al. 2016).

Here, we employ a reciprocal transplant experiment to

assess the relative physiological acclimatization capacity

and/or extent of local adaptation of two stress-tolerant

Caribbean coral species (Darling et al. 2012). Pseu-

dodiploria strigosa and Siderastrea siderea corals were

collected from nearshore and offshore environments on the

Belize Mesoamerican Barrier Reef System (MBRS) and

transplanted for 17 months (December 2017–July 2019).

Coral colonies were collected from a more thermally

variable and nutrient-rich nearshore reef and a more ther-

mally stable and nutrient poor offshore reef, fragmented,

and transplanted such that fragments of each genotype

were present in both reef locations. We hypothesized that

corals from nearshore habitats would possess more plastic
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responses to novel environmental conditions than their

offshore counterparts. This study has wide reaching

implications for coral restoration, as many current

restoration methods involve harvesting resilient corals and

transplanting them between reefs (Bowden-Kerby and

Carne 2012; Lirman and Schopmeyer 2016).

Methods

Sea surface temperature and carbonate chemistry

data assessment

To characterize the recent thermal history of the two sites

used in this experiment, daily 1-km horizontal resolution

sea surface temperature (SST) estimates were acquired for

the period of 2003–2019 from the Jet Propulsion Labora-

tory’s Multi-Scale High Resolution SST (JPL MUR SST)

records via the NOAA ERDDAP server (https://coast

watch.pfeg.noaa.gov). Previous research has demonstrated

that MUR SST better estimates in-situ temperatures than

other SST products on the MBRS, although it has been

shown to underestimate temperatures at depth, and that it is

an ideal fit for site characterization due to its lack of cloud

contamination and high spatial resolution (Baumann et al.

2016). In-situ temperature was monitored for the duration

of the experiment (17 months) using HOBO� V2 data

loggers placed at the depth of the table nurseries (1.7 m at

False Caye and 3 m at Silk Caye). Monthly carbonate

chemistry data were collected from NOAA ACCRETE

ocean acidification product suite (Cai et al. 2010) at

0.1� 9 0.1� resolution from January 2016–December 2017

(two years of data predating the experiment). Only data

from discrete grid cells that contained each site were

utilized.

Study sites description

Field work was conducted at a nearshore reef site (False

Caye, 16.602554� N, 88.340223� W) and an offshore site

(Silk Caye, 16.45026� N, 88.04360� W) on the southern

portion of the Belize MBRS. Nearshore reefs on the Belize

MBRS have previously been characterized as having

greater annual seawater temperature variations and higher

incidence of temperatures exceeding the published regional

coral bleaching threshold of 29.7 �C than offshore reefs

(Aronson et al. 2002; Baumann et al. 2016). Additionally,

remotely sensed chlorophyll-a has historically been * 5

times higher and more variable (due to land-based influ-

ences) on nearshore reefs compared to offshore reefs since

2003 (Baumann et al. 2016).

Satellite Sea Surface Temperature (SST) records

(2003–2019) reveal that the annual average SST at False

Caye 28.23 �C ± 0.02 (SE) was 0.08 �C greater than at

Silk Caye (28.15 �C ± 0.02; Table S1) over the past

16 years. Average in-situ temperatures over the experi-

mental period were 0.4 �C warmer at False Caye

(28.58 ± 0.07 �C) than at Silk Caye (28.18 ± 0.06�; Fig
S1A). The average annual range of SST was 0.7 �C greater

at False Caye (6.05 �C ± 0.21) than at Silk Caye

(5.32 �C ± 0.19; Table S1) over the past 16 years. Diel

temperature range (in-situ) was 27% higher (ANOVA

p\ 0.01) at False Caye (1.08 �C ± 0.01) than at Silk Caye

(0.85 �C ± 0.01) over the experimental interval

(Table S1). Daily temperature range was most different

between the two sites over the summer interval, when

mean temperatures exceeded 30 �C at False Caye

(30.07 �C). Additionally, relative differences in in-situ

light level were assessed over four months (Oct 2018–Jan

2019) as a proxy for sedimentation using HOBO Pendant�
loggers placed at the depth of each nursery table (1.7 m at

False Caye and 3 m at Silk Caye). Light levels were higher

at Silk Caye than at False Caye across the late summer and

early winter months (ANOVA p\ 0.01) despite the shal-

lower table depth at False Caye (Fig S1B).

Experimental design

A reciprocal transplant study was conducted utilizing coral

colonies collected at False Caye (nearshore) and Silk Caye

(offshore) at a depth of 1.5–4 m. In December 2017, six

colonies of S. siderea and six colonies of P. strigosa were

collected from both False Caye and Silk Caye (total of 12

colonies per species between the two sites). Spherical coral

colonies of approximately the same size were collected

from each site, with an average volume of 4792 cm3 ± 625

cm3 (S.E.). Colonies were collected with hammer and

chisel and transported to shore in seawater. Each colony

was sectioned into 13 roughly equally sized fragments

using a 10-inch wet tile saw (RIDGID) creating a total of

312 fragments across all colonies. The saw was lubricated

by natural seawater during sectioning and cleaned thor-

oughly with seawater and fresh water between each colony.

Immediately after sectioning, each fragment was rinsed

with seawater and placed into a bin of clean seawater. One

fragment from each colony was immediately flash-frozen

on dry ice to serve as a pre-transplantation sample (T0

control). Twelve fragments of each colony were glued to

plastic Petri dishes with pre-drilled holes in them with high

viscosity cyanoacrylate superglue (Glue Masters LLC).

Petri dishes were labeled with colored livestock ear tags

(Allflex) to denote colony and fragment number. Livestock

tags were glued to the underside of each Petri dish to

prevent biofouling and allow for easy identification of each

fragment. After gluing, each fragment was rinsed with

seawater, buoyantly weighed, and stored in a bin of clean
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seawater until placement back on the in-situ nursery tables.

Fragments were placed back on the in-situ nursery

tables on the same day as weighing at the nearshore shore.

However, due to logistical concerns and time required to

clean and weigh each fragment, all coral fragments were

overnighted in plastic bins in low wave energy reef flats at

Little Water Caye (1–2 m depth) before being placed back

on in-situ nursery tables. Plastic bins were covered with

nitex mesh to decrease light stress and no visible bleaching

or fragment damage occurred. A portion of the originally

collected offshore coral colonies were kept overnight

before sectioning in the same manner at the beginning of

the experiment. Coral fragments were placed onto plastic-

coated wire mesh nursery tables provided by Fragments of

Hope Ltd. at False Caye (nearshore) and Silk Caye (off-

shore) using all weather zip ties. These tables were

installed onto the substratum using rebar. For each colony,

six fragments were placed on a table nursery in their native

reef environment and six fragments were transplanted to

table nurseries in their nonnative reef. This fully reciprocal

experimental design created a native and nonnative

(transplant) treatment for each site. The four treatments are

defined as follows: Nearshore Native (corals collected at

False Caye and placed on the False Caye nursery), Off-

shore Native (corals collected at Silk Caye and placed on

the Silk Caye nursery), Offshore Transplant (corals col-

lected nearshore at False Caye and transplanted offshore to

the Silk Caye nursery), and Nearshore Transplant (corals

collected offshore at Silk Caye and transplanted nearshore

to the False Caye nursery).

Buoyant weight measurements were taken for each coral

fragment in the experiment, and a subset of fragments were

collected at three time points (3 months after transplanta-

tion, March 2018, n = 35; 9 months after transplantation,

October 2019, n = 37; and 17 months after transplantation,

May 2019, n = 46).

Calcification and survivorship

At each time point, each fragment was buoyantly weighed

for quantification of net calcification rates (Jokiel et al.

1978) using an Ohaus Scout� portable balance (Ohaus,

Parsippany, NJ). A hook was affixed to the bottom of the

balance to allow for hanging weights to be measured and

the balance was placed over a bucket of seawater. Salinity

and temperature of the seawater were quantified with an

YSI 30 probe (Yellow Springs Incorporated, Yellow

Springs, Ohio). Percent change in skeletal growth was

calculated as the difference between initial weights and

other time points (3, 9, and 17 months after transplant) to

represent net change in weight (gross weight gain ? net

dissolution). Buoyant weight of each fragment at each time

point was standardized to the surface area of each fragment

at the start of the experiment. Coral fragments with no live

tissue cover were considered dead for survival analysis,

and missing fragments were omitted from the calcification

analysis.

Symbiodiniaceae density and chlorophyll-a

Fragments collected and preserved during 0 and 3, 9, and

17 months after transplantation were sectioned into four

rectangular or triangular sub-fragments (dependent on

colony geometry). The length, width, and height (when

applicable) of each fragment were calculated using calipers

or a NIST certified ruler (Fisher Scientific, Hampton, NH).

Surface area of each fragment was calculated based on

these measurements and the geometry of each individual

fragment (Veal et al. 2010). Tissue was airbrushed from

one sub-fragment from each parent colony using deionized

water. The resulting slurry was homogenized using a Tis-

sue-Tearor� handheld homogenizer (BioSpec, Bartlesville,

Oklahoma). One mL of the resulting homogenized slurry

was aliquoted for Symbiodiniaceae density analysis as per

Kenkel et al (2015). Briefly, a 1:1 mixture of formalin and

Lugol’s iodine was added to the aliquot to stain Symbio-

diniaceae cells for counting. Symbiodiniaceae densities

were determined by conducting replicate (n = 3–8) cell

counts of 10 lL samples using a hemocytometer and

compound microscope (100 9 magnification) and counts

were standardized to the surface area of their respective

sub-fragment.

The remaining tissue slurry was centrifuged at 4400 rpm

for 3 min to pellet out the Symbiodiniaceae portion. Coral

animal fraction (supernatant) was poured off, leaving the

Symbiodiniaceae pellet behind. Chlorophyll-a was extrac-

ted from the Symbiodiniaceae pellet for 24 h. using a 90%

acetone dark incubation at - 20 �C (Kenkel et al. 2015).

Samples were diluted by adding 0.1 mL of extracted

chlorophyll-a sample to 1.9 mL of 90% acetone. Extracted

chlorophyll-a content was measured using a Turner Design

10-AU fluorometer with the acidification method (Parsons

et al. 1984) and expressed as lg of chlorophyll-a per

cm2 of coral tissue surface area. If sample values were too

high or too low to read on the fluorometer, samples were

reanalyzed by either diluting or concentrating the sample,

respectively.

Energy reserves

Total soluble proteins, lipids, and carbohydrates of the

coral holobiont were measured for all frozen fragments and

normalized to biomass (ash free dry weight, AFDW), fol-

lowing methods modified from Rodrigues and Grottoli

(2007). Sample preparation details for energy reserve

analyses can be found in the Supplementary Methods.
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Protein content was quantified colorimetrically for each

sample using a Bradford Assay (PierceTM Coomassie

Protein Assay Kit). Total lipids of the coral holobiont were

extracted following the Folch Method (Folch et al. 1956)

and measured on a plate reader at 540 nm (following

methods modified from Cheng et al. 2011). Carbohydrates

were quantified utilizing a sulfuric acid incubation (Ma-

suko et al. 2005) and read on a plate reader at 485 nm.

Additional details on each energy reserve assay are avail-

able in the Supplementary Methods. All energy reserve

values are reported as mg energy reserve per mg AFDW.

Total energy reserves were calculated as the gravimetric

sum (mg) of protein, lipid, and carbohydrate values for

each sample.

Coral host tissue stable isotopes

Samples were prepared for stable isotope analysis follow-

ing a methods from Wall et al (2019) and Maier et al

(2010). A sub-fragment of each coral was airbrushed using

milliQ water. The resulting supernatant was homogenized

using a Tissue-Tearor handheld homogenizer. The

homogenized slurry was filtered through a 20-lm mesh

sieve to remove any residual carbonate. Filtered slurry was

centrifuged at 2000g for three minutes and the resulting

liquid (coral host layer) was decanted off into a clean

conical tube. The pellet was suspended in five mL milliQ

water and centrifuged again. The resulting liquid layer was

added to the coral host layer in a clean conical tube. The

coral host layer was then frozen at - 80 �C. The pellet

(Symbiodiniaceae portion) was re-suspended in 5–10 mL

milliQ, vortexed, and frozen at - 80 �C. Following

freezing, all samples were lyophilized (freeze-dried).

Approximately one mg (± 0.1 mg) of each freeze-dried

sample was placed into a tin capsule and folded into a ball.

Samples were placed into 96-well plate and kept in a

desiccator until analyzed. d15N (a measure of the ratio of
15 N:14 N in a sample relative to that of a standard) and

d13C (a measured of the ratio of 13C:12C in a sample rel-

ative to that of a standard) were assessed at the Duke

Environmental Stable Isotope Laboratory. The samples

were combusted at 1020 �C in a Carlo-Erba NA1500 ele-

mental analyzer via a ThemoFinnigan Conflo III to a

ThermoFinnigan Delta ? XL IRMS. d13C values of coral

host tissues are reported relative to the Vienna Peedee

Belemnite Limestone Standard (V-PDB) at a precision of

0.1 %. The d15N values of coral host tissues are reported

relative to an atmospheric N2 standard at a precision of

0.1%.

Statistical analyses

Fully interactive three-way mixed models were used to

assess the impacts of species, time point, and transplant

treatment on all parameters (growth, protein, lipid, carbo-

hydrate, total energy reserves, endosymbiont density,

endosymbiont chlorophyll-a, coral host d13C, and coral

host d15N) using the function lmer in the R package lme4

(Bates et al. 2013). The best fit model structure was

assessed using AIC (Tables S3, S4), with a random effect

of colony in all model structures. For lipid concentrations,

all mixed models resulted in a singular fit, so a simple

linear model was used. Parametric bootstraps (1500 itera-

tions) were performed to model 95% confidence intervals

(Wilcox 2010). Mean and non-overlapping bootstrapped

95% confidence intervals were interpreted as statistically

clear differences between treatments (Fig. 2, 4, S2, S3).

A Kaplan–Meier estimate of survival was used to assess

the effect of transplant treatment on survival using the

package survival in R (Therneau 2015). Cox proportional

hazard models, with colony as a random effect and near-

shore native corals as controls, were performed using

coxme in R (Therneau 2018). The relationships between

measured response variables (energy reserves, Symbio-

diniaceae physiology, and isotope values) values in col-

lected fragments of each coral species at 3 and 9 months

after transplant were assessed using a principal component

analysis (PCA) on a scaled correlation matrix. Data from 0

and 17 months after transplantation were excluded from

the PCA due to missing buoyant weight and isotope data,

respectively. A PERMANOVA (adonis function in

R package, vegan (Oksanen et al. 2013)) was used to assess

the effects of transplant treatment and time after transplant

on the relationship between response variables for each

coral species.

Results

Survivorship

Pseudodiploria strigosa fragments exhibited 100% sur-

vival at 3-month and 9-month post-transplantation in all

four treatments. Similarly, P. strigosa maintained 100%

survival 17-month post-transplantation in both the near-

shore and offshore native treatments. However, survival

was reduced to 96% (1 of 25 fragments) and 92% (2 of 26

fragments) in nearshore and offshore transplant treatments

after 17 months, respectively. There was no significant

effect of transplant treatment on the survival of P. strigosa

over the course of this 17-month study time (p = 0.1477;

Fig. 1a; Table S2).
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Siderastrea siderea fragments exhibited 100% survival

throughout the experiment in the offshore native treatment

only (Table S2; Fig. 1b). Siderastrea siderea fragments in

the nearshore transplant treatment exhibited only a single

mortality event 9 months after transplantation, resulting in

96% survival 17 months after transplant. Conversely, sur-

vival declined at all time points in both the nearshore

native and offshore transplant treatments, resulting in 72%

and 32% survival, respectively. Transplant treatment had a

significant effect on survival of S. siderea (p\ 0.001

Fig. 1b; Table S2).

Net coral calcification

Across all transplant treatments, P. strigosa corals main-

tained net calcification at each time point (Fig. 2; Table S5;

Fig S3). Nearshore native fragments showed a significantly

greater change in weight over 17 months than did offshore

transplant corals (the same genotypes moved to the off-

shore environment), increasing their weight by 150%

compared to just 77% in offshore transplant corals (Fig. 2a;

Table S5). Additionally, nearshore transplant fragments

showed a greater change in weight over 17 months than did

offshore native fragments, growing by 148% compared to

114% (Fig. 2; Table S5).

Net calcification was observed across three of the four

transplant treatments in S. siderea, while offshore trans-

plant corals failed to maintain net growth, even after

17 months in their new environment (Fig. 2b; Table S5;

Fig S2). Offshore transplant S. siderea corals exhibited net

dissolution (net skeletal loss) for the first nine months of

the study (Fig. 2b; Table S5). As with P. strigosa, near-

shore native fragments showed a significantly greater

increase in weight over 17 months than did offshore

transplant corals (37% change in weight compared to 8%;

Fig. 2b; Table S5) and nearshore transplant corals also

showed greater change in weight over 17 months than did

offshore native corals (Fig. 2b; Table S5). Indeed, near-

shore transplant S. siderea exhibited the greatest change in

weight of all S. siderea corals in the experiment (80%

change in weight compared to - 2.5%; Fig. 2b; Table S5).

Symbiodiniaceae physiology

Symbiodiniaceae densities varied seasonally in P. strigosa

with higher densities occurring in winter (Pre-transplanta-

tion: Dec 2017) and early summer months (3 months after

transplantation: March 2018, 17 months after transplanta-

tion: May 2019) (Fig. 3a; Table S11). Densities were 3–6

orders of magnitude lower in late summer (9 months after

transplantation, September 2018) than in other seasons in
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populations. Open circles are individual fragment values
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P. strigosa, though these values were not always clearly

different from all other time points (Fig. 3a; Table S11).

There were no statistically clear differences in Symbio-

diniaceae densities across time points or treatments in S.

siderea (Fig. 3b; Table S11).

There were no clear differences in chlorophyll-a across

time points within a treatment in P. strigosa corals

(Fig. 3c; Table S11). However, chlorophyll-a was clearly

higher in nearshore native P. strigosa corals at three and

nine months after transplantation than in offshore
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transplant P. strigosa at nine and 17 months after trans-

plantation (Fig. 3c; Table S11). There were no clear dif-

ferences in chlorophyll-a concentration between time

points or treatments in S. siderea corals (Fig. 3d;

Table S11).

Total energy reserves

There were no differences in total energy reserves (coral

host ? Symbiodiniaceae) between time points or treat-

ments in P. strigosa (Fig. 3e; Table S7). There were no

differences in total energy reserves zero-, three-, and nine-

month post-transplantation in S. siderea (Fig. 3f;

Table S7); however, total energy reserves were lowest

17 months after transplantation in all treatments (Fig. 3f;

Table S7). There were no differences in protein concen-

trations across time points within a treatment in P. strigosa,

but carbohydrate and lipid concentrations were elevated

3 months after transplant relative to T0 in offshore natives

(Fig S4A, C, E). Overall, no value of protein, carbohydrate,

or lipid concentration dropped below T0 values in P.

strigosa (Fig S4A, C, E). In S. siderea, protein concen-

trations declined between 9 and 17 months after trans-

plantation in offshore natives but no differences were

observed in other treatments (Fig S4B). Carbohydrates

declined between T0 and 17 months after transplantation in

nearshore transplant S. siderea, while there were no clear

differences in other treatments (Fig S4D). There were no

differences in lipid concentrations in S. siderea across time

points or treatments (Fig S4F).

d15N and d13C isotopes

Nearshore native corals had * 20% higher d15N values

than offshore native corals in both species (Fig. 4a, b;

Table S12, S13). Coral transplanted to the offshore

had * 18% higher d15N values than offshore native corals

in both species (Fig. 4a, b; Table S12, S13). Siderastrea

siderea fragments transplanted to the nearshore had *
13% lower d15N values than nearshore native corals, while

S. siderea transplanted to the offshore had * 19% higher

d15N values than offshore native corals (Fig. 4b;

Table S12). There were no statistically clear differences in

d15N across time points in in S. siderea. Additionally,

There were no statistically clear effects of transplant

treatment or time point on Transplant d13C in either spe-

cies, though corals native to or transplanted to the near-

shore had marginally lower d13C values(Fig. 4a;

Table S12, Table S13).

Principal component analysis

Principal component analysis and PERMANOVA of

measured response variables identified significant effects of

transplant treatment and number of months after transplant

on coral holobiont physiology in both species (p\ 0.01 in

both species; Fig. 5a, b). In P. strigosa there is consider-

able overlap between all transplant treatments and both

time points, yet slight differences are visible due to ele-

vated carbohydrate and lipid concentrations in offshore

native corals compared to other treatments (Fig. 5a). Dif-

ferences between time points in P. strigosa are driven by

higher symbiont density 3 months after transplant and

higher calcification rates 9 months after transplant

(Fig. 5a). In S. siderea, nearshore and offshore native

treatments are separated by higher calcification rates, lipid

concentration, and d15N values in nearshore natives, while

transplanted corals (nearshore and offshore transplant)

overlap with both native treatment and have characteristics

of both sites (Fig. 5b). Differences between time points in

S. siderea are driven by higher symbiont density, d13C
values, and d15N values 3 months after transplant and

higher protein and carbohydrate concentrations 9 months

after transplant (Fig. 5b).
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Discussion

Evidence for acclimatization in two transplanted

coral species over 17 months

Pseudodiploria strigosa corals from nearshore and offshore

reefs of the Belize Mesoamerican Barrier Reef System

possessed the acclimatization capacity necessary to suc-

ceed following transplantation regardless of native reef

environment as evidenced by positive growth, low mor-

tality, and maintenance of energy reserves in all treatments

(Fig. 1a, 3a, 4e). Additionally, principal component anal-

ysis of host and Symbiodiniaceae physiology revealed that

transplanted P. strigosa retain some similarities with corals

from their native environments, but also show significant

overlap with corals native in their transplant environments

(Fig. 5a). Thus, P. strigosa can acclimatize when trans-

planted to new reef environments (Coles et al. 2018).

Notably, acclimatization of nearshore transplant (offshore

to nearshore) P. strigosa appears limited. Nearshore

transplant (offshore to nearshore) S. siderea performed

similarly to nearshore native conspecifics, showing positive

growth and low mortality (Fig. 1b, 3b) which is indicative

of acclimatization (Coles et al. 2018). Principal component

analysis revealed clear differences between nearshore and

offshore native S. siderea populations and that both near-

shore and offshore transplant populations appear to overlap

both native populations, indicating that some degree of

acclimatization occurs in both transplant populations

(Fig. 5b). However, offshore transplant (nearshore to off-

shore) S. siderea corals showed over 60% mortality and did

not show positive growth for up to 17-month post-trans-

plant (Fig. 1b, 3b), possibly due to UV light exposure.

While both coral species show evidence of acclimatization,

these slow growth rates and high mortality rates in offshore

transplants suggest limited acclimatization capacity in

response to this treatment (Kenkel et al. 2015).

Plasticity (acclimatization) in coral growth and calcifi-

cation responses, similar to what was observed in offshore

to nearshore transplants in this study, has also been

observed in the Red Sea (Sawall et al. 2015). Additionally,

corals that possess flexibility or plasticity in their utiliza-

tion and acquisition of heterotrophic energy may be more

likely to succeed in nearshore conditions, where sediment

and nutrient concentrations are elevated (Grottoli et al.

2006). Corals transplanted from offshore to nearshore in

this study demonstrate elevated growth rates and greater

heterotrophic energy utilization in tissues, providing evi-

dence that they are able to acclimatize to warmer, more

variable, and higher nutrient conditions. Conversely, corals

transplanted from nearshore to offshore show depressed

growth rates, suggesting that they are not able to accli-

matize successfully to offshore conditions in the short term.

In order to parse the relative roles of acclimatization and

genetic adaptation in the responses observed in this study,

further research into genetic divergence between sites and

transplant treatments is needed.
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Local adaptation to nearshore conditions limits

acclimatization potential of two nearshore coral

species over 17 months

Corals of both species transplanted from nearshore to off-

shore (offshore transplants) grew significantly slower than

nearshore native and offshore native corals in both species

(Fig. 1a, b). As transplants performing worse than natives

within a treatment is an indicator of local adaptation within

the transplanted population (Kawecki and Ebert 2004),

these results demonstrate nearshore S. siderea and P. stri-

gosa corals may be locally adapted to nearshore conditions

(low light, high sedimentation and nutrient loads, warmer

and more variable temperatures than offshore), a phe-

nomenon previously observed in other corals species

(Howells et al. 2013; Kenkel et al. 2015). Such local

adaptation to the nearshore environment appears to limit

acclimatization potential in nearshore corals to offshore

environments (Howells et al. 2013) in the short term. Local

genetic adaptation of the coral host has been shown in

previous studies, where genes associated with immune

function and apoptosis were upregulated in corals native to

highly variables reefs, regardless of what environment they

were transplanted to (Palumbi et al. 2014). Additional

genetic evidence of local adaptation was seen in nearshore

corals in Florida that performed transcriptional frontload-

ing through upregulation of metabolic genes in order to

improve thermotolerance (Kenkel et al. 2013b). Local

genetic adaptation to thermal regimes can also be attributed

to the Symbiodiniaceae, as chlorophyll retention has pre-

viously been shown to be higher in corals native to high

variability reefs regardless of current environment (Barshis

et al. 2014; Howells et al. 2013). Local adaptation is also

possible through changing of dominant Symbiodiniaceae

species (Baker et al. 2013; Pandolfi et al. 2011). Our results

do not show clear evidence of a native reef effect on

Symbiodiniaceae chlorophyll concentrations. Thus, further

research into mechanisms underlying local adaptation in

these populations, including genotyping and Symbiodini-

aceae community analysis, is needed.

High mortality coupled with low growth rates in S.

siderea offshore transplants and low growth rates in P.

strigosa offshore transplant corals may have been driven, at

least in part, by increased UV radiation exposure in the

offshore environment relative to nearshore. Short-term

increases in UV radiation exposure can cause bleaching in

some coral species (Gleason and Wellington 1993) and can

also lead to slower growth (Gleason 1993) in calm, clear

water down to a depth of at least 12 m (Gleason and

Wellington 1993). Such calm and clear water conditions

occur at the offshore reef site as it is located in the back

reef behind the reef crest but is also nearly 30 km from

shore, leading to diminished land-derived sedimentation.

The UV levels were likely higher offshore compared to

nearshore, but Symbiodiniacea cell density and chloro-

phyll-a concentrations did not clearly differ between native

and transplant corals of either species (Fig. 3a–d), indi-

cating that UV bleaching was not a persistent stressor for

offshore transplanted corals over this 17-month experi-

ment. However, it appears that nearshore native and

transplant corals had slightly higher chlorophyll-a concen-

trations in P. strigosa, possibly associated with lower light

conditions (Fitt et al. 2000), suggesting possible adaptation

to low light conditions in nearshore natives and acclima-

tization to lower light in nearshore transplants.

Nearshore growth advantage driven by increased

heterotrophy and/or terrestrial N sources

In P. strigosa and S. siderea corals transplanted from off-

shore to nearshore (nearshore transplant) grew significantly

faster than offshore native corals (Fig. 2a, b), indicating

that offshore corals of both species likely possess the

acclimatization capacity to survive and thrive in warmer,

more variable, and nutrient-rich conditions than their

native environment provides. These findings also demon-

strate that the nearshore environment may provide a more

optimal environment for growth than the offshore reef for

some species. Previous research on S. siderea and P. stri-

gosa on the Belize MBRS revealed that nearshore corals

have historically grown faster than offshore conspecifics,

possibly due to warmer temperatures or nutrient loading

nearshore that do not exceed a threshold that would cause

stress (Baumann et al. 2019).

Slightly warmer average temperatures nearshore

(0.8 �C; Fig S1A; Table S1) may play a role in faster

nearshore coral growth rates compared to offshore, as

increases in temperatures up to and slightly above a coral’s

thermal optimum have been shown to increase coral

growth rates via a metabolic effect (Castillo et al. 2014;

Jokiel and Coles 1977; Marshall and Clode 2004). As

growth rates were higher at the nearshore site than the

offshore site, and low mortality was observed nearshore

over the 17-month study, it is likely that the thermal limit

for each species was not met (or greatly surpassed) in the

nearshore environment (Jokiel and Coles 1977). Indeed, it

is possible that these two stress-tolerant corals have ther-

mal optima that correspond to nearshore conditions,

allowing them to thrive in nearshore growth conditions,

although some mortality was observed in nearshore native

S. siderea corals, possibly indicating that nearshore con-

ditions are not always ideal for the survival and acclima-

tization of this species. Increasing temperatures associated

with climate change coupled with continued coastal

development may also reverse the trend we see here,
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forcing temperatures, nutrients, and /or sediment levels

above stress thresholds.

Increased growth rates in nearshore transplant compared

to offshore native corals could also be driven by increased

heterotrophic opportunity or differences in nutrient sour-

ces. Increased concentrations of suspended particulate

matter have been shown to correlate with elevated coral

growth rates elsewhere in the Caribbean (Tomascik and

Sander 1985), suggesting that increased heterotrophic

opportunity could potentially enable higher growth rates

nearshore (Houlbreque and Ferrier-Pages 2009). As both P.

strigosa and S. siderea corals have been shown to metab-

olize N ingested from sediment and particulates (Mills

et al. 2004; Mills and Sebens 2004), and S. siderea appears

to show greater asexual budding in high sediment condi-

tions (Foster 1980), it is likely that these two species are

able to utilize N from sediments to aid in calcification at

nearshore sites. Though elevated nutrient levels correlated

with elevated growth rates in these stress-tolerant coral

species, nutrient enrichment may be damaging to the

ecosystem at-large due to stimulation of macroalgal growth

and cover and diminished coral diversity at nearshore sites

compared to offshore sites (Baumann et al. 2016; De’ath

and Fabricius 2010). Should nearshore nutrient levels

increase too much, they may negatively impact coral

growth rates, as shown in Mo’orea (Gil 2013). Addition-

ally, differences in coral genotypes across environments

and treatments may also have impacted growth rates, as

growth rates between genotypes subjected to the same

conditions have been shown to vary by up to 200% (Papke

et al. 2021).

Enrichment in d15N in nearshore corals compared to

offshore corals (Fig. 4a, b) indicates differing sources of

DIN and DON utilized by corals in nearshore vs offshore

environments (Heikoop et al. 2000; Nahon et al. 2013;

Wall et al. 2019). Possible nearshore sources of enriched

d15N include sewage (* 10%; Baker et al. 2010; Katz

2004), mangrove leaf detritus (* 5%;Wooller et al. 2003),

terrestrial sediments (Mills et al. 2004), and agricultural

runoff. Higher d15N in consumer tissues is often indicative

of higher tropic position (DeNiro and Epstein 1981; Sturaro

et al. 2019), suggesting that nearshore corals may utilize

more heterotrophically acquired energy than offshore cor-

als. However, due to tightly coupled recycling mechanisms

between corals and their associated symbionts, it can be

hard to tie enrichment in d15N to increased heterotrophy

(Reynaud et al. 2009). Thus, nearshore corals and those

transplanted to the nearshore from the offshore likely uti-

lize different (more terrestrial, anthropogenic, and/or

mangrove derived) DIN and DON, sources than offshore

corals and may also increase heterotrophic N utilization to

enhance growth rates.

Other environmental factors

The role variable pCO2 plays in the differential growth

seen between nearshore and offshore corals in this study

appears minor. As experimental corals were sectioned and

skeleton was exposed during the experiment, dissolution of

skeleton was possible (Rodolfo-Metalpa et al. 2011).

However, TA and XAr were lower on the nearshore reef

(False Caye) than the offshore reef (Silk Caye) in 2016 and

2017 (Fig S2), meaning increased dissolution rates should

occur nearshore. Additionally, elevated nutrients can lead

to increased bioerosion and net community calcification

(Rice et al. 2020; Silbiger et al. 2018). Yet net growth rates

were higher nearshore compared to offshore, suggesting

that negative effects of carbonate chemistry in the near-

shore may have been offset by heterotrophic opportunity or

temperature based metabolic effects over this time frame

(17 months), though there may also be inherent resilience

to high pCO2 conditions in Belizean S. siderea populations

(Bove et al. 2019).

High densities of parrotfish on reefs with low coral

cover (e.g., nearshore reefs) may impact the growth and

survival of coral populations on such reefs (Burkepile

2012). Parrotfish are selective corallivores and do not

preferentially graze on P. strigosa in Belize, but have been

shown to graze on S. siderea (Rotjan and Lewis 2006). As

fish use of coral ecosystems decreases as sedimentation

increases, the nearshore site is less likely to be impacted by

corallivory than the offshore site (DeMartini et al. 2013).

Thus, S. siderea growth rates on the offshore site may have

also been slowed due to corallivory.

The offshore site has been shown to have higher wave

exposure and flow rates than the nearshore site, although

both sites have moderate to high wave exposure (Chollett

and Mumby 2012). Flow rates as slow as 5 cm/s have

proven sufficient to reduce the boundary layer around the

coral in order to allow for more rapid oxygen and nutrient

transfer (Shashar et al. 1993), though lower flow rates

correlate with lower photosynthesis and respiration rates,

and lower calcification rates in laboratory studies (Den-

nison and Barnes 1988; Schutter et al. 2010). Increasing

water velocity has been shown to increase P uptake, growth

rates, and respiration rates in corals while it can decrease

bleaching incidence (Atkinson and Bilger 1992; Nakamura

and Yamasaki 2005; Sebens et al. 2003). As such, coral

metabolism and growth rates may also be influenced by

differential flow rates between offshore and nearshore sites.
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Conclusion

Our results suggest that nearshore and offshore populations

of P. strigosa and S. siderea possess some acclimatization

potential to respond plastically to changing environmental

conditions, but that this acclimatization potential appears

greater in offshore populations. Nearshore populations may

be locally adapted to native conditions, and this local

adaptation may limit their acclimatization potential in other

habitats in the short term. As such, some corals native to

nearshore environments may not be ideal candidates for

coral restoration practices focused on restoration of off-

shore environments, though physiological responses to

environmental heterogeneity are likely species and region

specific. However, replicating our transplant study with

additional species and longer time frames is recommended

as restoration efforts in the Caribbean become more urgent

due to Stony Coral Tissue Loss Disease and increasingly

severe bleaching events.
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