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Abstract: There is a growing need for improved techniques to monitor coral reef restoration as
these ecosystems and the goods and services they provide continue to decline under threats of
anthropogenic activity and climate change. Given the difficulty of fine-scale requirements to monitor
the survival and spread of outplanted branching coral fragments, Unoccupied Aerial Systems (UASs)
provide an ideal platform to spatially document and quantitatively track growth patterns on shallow
reef systems. We present findings from monitoring coral reef restoration combining UAS data with
object-oriented segmentation techniques and open-source GIS analysis to quantify the areal extent
of species-specific coverage across ~one hectare of shallow fringing reef over a one-year period
(2019–2020) in Laughing Bird Caye National Park, southern Belize. The results demonstrate the
detection of coral cover changes for three species (Acropora cervicornis, Acropora palmata, and Acropora
prolifera) outplanted around the caye since 2006, with overall target coral species cover changing
from 2142.58 to 2400.64 square meters from 2019 to 2020. Local ecological knowledge gathered from
restoration practitioners was used to validate classified taxa of interest within the imagery collected.
Our methods offer a monitoring approach that provides insight into coral growth patterns at a fine
scale to better inform adaptive management practices for future restoration actions both within the
park and at other reef replenishment target sites.

Keywords: remote sensing; photogrammetry; drone-based mapping; acroporids; spatial ecology;
image segmentation; local ecological knowledge (LEK)

1. Introduction

Coral reefs are a vital component of tropical marine ecosystems, providing a variety
of ecosystem service benefits such as habitat for a quarter of all marine species, shoreline
protection and flood reduction, fisheries production, and climate regulation [1–3]. Globally,
coral reefs have experienced large-scale decline resulting from anthropogenic influence and
climate change impacts. Regionally, Caribbean acroporid corals were included in the US
Endangered Species Act (2006) and designated as critically endangered on the IUCN Red
List (2008). Marine scientists and ecologists have responded by initiating coral restoration
activities to enhance the resiliency of vulnerable reefs, with active restoration techniques
becoming a popular practice for many acroporid species [4–6]. Due to the increase in coral
restoration work around the world, there is a need for improved monitoring techniques
to measure the success of coral growth across increasingly larger restoration sites [7,8]. To
address this issue, we investigated the utility of an Unoccupied Aerial System (UAS) to
quantify the spatial extent and growth of three acroporid species (A. cervicornis, A. palmata,
and A. prolifera) outplanted at sites located in Laughing Bird Caye National Park (LBCNP)
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in Belize since 2006. We demonstrate the use of UAS and photogrammetric techniques
to collect and process multitemporal orthophoto mosaics and analyze changes in species
population density between 2019 and 2020 using object-based segmentation and manual
interpretation of imagery. We provide a quantitative UAS-based monitoring framework
at a local scale for stakeholders in need of measuring coral restoration success. We were
interested in documenting the natural spread of these reintroduced species over time over a
larger area, which could not be captured by diver-based photomosaics or other traditional
benthic monitoring methods, which sample at smaller spatial scales [4–8] (Figure 1).
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Figure 1. The platform used to collect remotely sensed data needs to match the scale of the research
question. Here are examples of how the spatial detail in the data and the area coverage changes, based
on the platform used to collect data. Each have their own advantages and disadvantages; however,
the platform and the sensor used should be based on the project area and resolution required to
answer the research question.

Optimizing site selection of restoration sites and measuring coral growth is of ut-
most concern to researchers and practitioners alike [4,9]. Documenting the success of
most restoration programs is limited by a lack of quantitative monitoring during the
post-outplanting and post-nursery stages, as indicated by NOAA’s 2015 recovery plan for
acroporid species, which highlighted concerns over a lack of standardized methodology for
assessing the success of restoration programs [5]. Indeed, 60% of coral restoration projects
report monitoring restoration sites for a period of less than 18 months, due to the lack
of funds and capacity to apply a standardized monitoring approach to the program [4].
Historical means of monitoring have included single colony growth measurements, point
intercept transects, and benthic quadrants. An increasingly used technique for quantita-
tively measuring changes in coral growth both above and below the water is Structure
from Motion (SfM), a photogrammetric method for generating models of three-dimensional
structures using multiple overlapping images [10–13]. Although underwater photogram-
metric models generated by SfM techniques are well suited for monitoring small plots
(up to 1000 m2), this approach becomes more laborious and unpractical to use as the area
to be monitored increases. In addition, it can be difficult to conduct underwater surveys
in extremely shallow areas where acroporids often grow; hence, the aerial perspective
provided by a UAS offers a potential monitoring solution in these areas.

The inclusion of monitoring at broader scales than possible with divers alone allows
the integration of new findings from relevant research into restoration practice and un-
derstanding long-term trends, such as how storms naturally spread branching corals [14].
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As spatial patterning may influence ecological processes relating to population assem-
blages and dispersal, understanding and quantifying the spatial aspects of the long-term
post-outplanting step within the coral restoration process is imperative [15,16]. Having a
holistic overview of the changes before and after outplanting from year to year will provide
indicators of success, inform overall adaptive management of restoration programs, and
lead to improved decision making based on spatially explicit information.

The advancement of UAS technologies and availability of low-cost consumer models
provide an emerging monitoring tool at centimeter-scale spatial resolution (e.g., <4 cm)
that was previously difficult to acquire. This highly adaptable “personal” remote sensing
platform permits the collection of data on demand, providing a new monitoring tool for
acquiring high-spatial- and temporal-resolution data that are customizable. Typically flown
at altitudes below 120 m, UASs can be rapidly deployed below cloud cover, capturing very
detailed data using specialized sensors and payloads to map and analyze ecological spatial
patterns at precise temporal scales [17]. Being able to map pre-determined areas at precise
times offers a distinct advantage for environmental monitoring, such as tracking coral reef
restoration success. When flown at lower altitudes (e.g., <30 m), UAS technology has been
used to analyze coral reefs and their associated changes in composition and biodiversity
over shallow reef systems at very high spatial resolutions (e.g., <1 cm), providing the
ability to detect individual coral colony species and quantify coral cover [16–18]. A UAS
fills a niche for acquiring monitoring data at a local scale while covering a larger area
(e.g., 2–4 km2) than the typical spatial extent of monitoring data acquired through close-
proximity photogrammetry underwater survey methods (e.g., 10 × 10 m2) [18–22].

2. Materials and Methods
2.1. Study Area

Laughing Bird Caye National Park (LBCNP) is a 40.96 km2 faro atoll that was declared
within the broader Belize Barrier Reef Reserve System (BBRRS) in 1996 [23] (Figure 2).
LBCNP makes up one of seven Marine Protected Areas (MPAs) within the BBRRS. LBCNP
has retained a full-time ranger presence since 2003 and fosters a large tourism component
due to its close proximity (~19.5 km southeast) to Placencia, Belize [21]. Fragments of
Hope (FoH)—a community-based organization based in Placencia—has been actively
replenishing acroporids at Laughing Bird Caye National Park since 2006 and is recognized
as one of the most successful coral restoration sites in the world by the UN Decade on
Restoration, not only for the longevity and extent of work at LBCNP but also for expanding
their efforts (2015–present) to over 20 other sites in seven MPAs in Belize [23,24]. Our UAS
monitoring research focused on the shallow fringing (<1–4 m depth) coral reefs surrounding
Laughing Bird Caye, with an areal extent of ~2km2. LBCNP was hit directly by Category 4
Hurricane Iris in 2001, decimating the caye and reducing the live shallow coral cover to
less than 6%, which was the impetus for restoration efforts. Since active restoration began,
the use of diver-based mosaics has demonstrated an increase of up to 60% in live coral
from 2014 to 2020. However, these taxa naturally spread outside of these plots as they
are less than 800 m2 and as Caribbean acroporids are adapted to high wave energy and
spread asexually, which has hitherto not been captured by diver-based mosaics, nor have
any of the other outplanted sites outside of the diver-based mosaic plots, necessitating a
new approach to quantify total coral growth.
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Figure 2. Location of Laughing Bird Caye National Park (LBCNP), a 40.96 km2 faro atoll within the
broader Belize Barrier Reef Reserve System (BBRRS) and 19.5 km southeast of Placencia, Belize. The
orthophoto mosaic on the right was collected using a UAS on 19 September 2020 at a flying height
of 70 m (1.9 cm spatial resolution) and was used to map ~1 ha of shallow reef area surrounding
Laughing Bird Caye.

2.2. Coral Restoration Methods and Species of Interest

The ability to repopulate acroporids through asexual fragmentation has increased
interest in restoration programs throughout the Caribbean [25,26]. Asexual restoration
techniques, also known as coral gardening, can be summarized within three general steps:
coral fragment collection, nursery stage, and subsequent outplanting [11,26,27]. Coral
fragments are collected from wild colonies and tended to within an underwater “nursery”
where they are grown to the stage appropriate for reintroduction onto the reef. Fragments
are then replanted out to sites chosen with specific criteria and expected to grow and
replenish local populations.

Following initial outplanting in 2006, restoration activities by FoH were scaled up with
in situ coral nurseries and mass outplantings in 2009–2010 at LBCNP, with 87,267 fragments
outplanted in LBCNP through 2021 [5,24,28]. FoH cultivates restoration for three Acroporid
taxa: Acropora prolifera, Acropora cervicornis, and Acropora palmata (Figure 3). Elkhorn coral,
Acropora palmata, is a fast-growing, branching coral that was once the most dominant
species in southern Belize and is most often found within the shallow reef crest where
high wave energy is prevalent [29,30]. A. palmata abundance has decreased throughout
the Caribbean over the past 40 years, including southern Belize, where estimated losses
are over 97% [31]. Elkhorn coral provides storm protection to coastlines in addition to
providing habitat to fish and invertebrate species. Staghorn coral, Acropora cervicornis, is an
additional branching, fast-growing stony coral whose range has also been reduced within
the Caribbean [32]. Both of these species are increasingly targets for coral restoration, with
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reports of success [33]. Acropora prolifera is a coral hybrid of staghorn and elkhorn coral,
considered a putative first-generation hybrid between A. palmata and A. cervicornis [34].
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2.3. UAS Data Collection

Table 1 shows the dates and flight parameters when imagery was collected over
LBCNP using a DJI Phantom 4 Pro v2 multi-rotor UAS with a fully integrated 3-axis gimbal.
This consumer drone costs approximately USD 1800–2500 and weighs 1375 g. It has a
maximum data collection time of 20–25 min depending on environmental and weather
conditions and can typically map ~90 ha at 3.3 cm spatial resolution flying at an altitude
of 120 m using one fully charged battery. The 1-inch CMOS sensor in the RGB camera
(20 MP (5472 × 3648)) operates using a mechanical (global) shutter with shutter speeds
up to 1/2000 sec. Although fixed-wing UASs are able to map larger areas on a single
battery, multi-rotor UASs have the advantage of being more easily deployed and recovered
from a boat. In addition, they have the ability to hover at variable heights over coral
colonies to acquire more detailed images that can be used for field verification and accuracy
assessments of the resulting classification as well as further analysis of coral health. This
approach can be useful in shallow, high-wave-energy areas that are difficult and dangerous
for snorkelers to access.
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Table 1. Dates and flight parameters when photogrammetric imagery was collected over LBNP. All
flights were collected using 70% front and side overlap.

Date/Time
Flying

Height (m)
(AGL)

Spatial
Resolution

(cm)

Area
Mapped (ha) Conditions RMSE (m)

01-08-2019 60 1.8 12.4
Flat seas,
scattered

clouds
2.95

20-08-2020 63 1.9 20.8
Flat seas,
scattered

clouds
3.01

All missions were planned and executed using DJI Ground Station Pro (DJI GS Pro),
an Apple iOS iPad mission planning app. Stereo imagery with 70% front and side overlap
was acquired at an altitude of 60m Above Ground Level (AGL). When determining the
appropriate flying height, it is recommended to first acquire test data at varying heights
(e.g., 50 m, 75 m, 100 m) under the same ocean surface and solar conditions to assess the
resulting spatial resolution and ability to discriminate and identify individual coral species.
There is a trade-off when flying at lower altitudes to acquire higher resolution images since
the area one is able to map is exponentially reduced. Ideally, the optimal combination
would be to have the UAS fly as high as possible to map a larger area, while still having
sufficient spatial resolution to accurately identify individual coral species (Table 2). To
ensure maximum water penetration in the shallow zone (<3 m depth) and detailed capture
of the intertidal reef surrounding LBCNP in the UAS imagery, data were acquired during
calm sea state (minimal waves), low wind speed (<5 knots), low sun angle (e.g., early
morning at 07:00–09:00 or 16:00–18:00 local time) to minimize sunglint on the water surface.
For optimal data collection, it is recommended to use the fastest shutter speed possible
based on light conditions (e.g., 1/1000s) and to let the aperture and the ISO autoadjust
as necessary to ensure proper image exposure. This approach will minimize image blur
and thereby facilitates photogrammetric reconstruction and interpretation of the images.
It is important to recognize that both refraction at the water surface and scattering and
absorption within the water column will spectrally and spatially alter the appearance of
the seabed [35].

Table 2. Flying heights and resulting spatial resolution and corresponding area mapped using a DJI
Phantom Pro v2 when image capture is set to 70% front and side overlap.

Flying Height (m) (AGL) Spatial Resolution (cm)
Area Mapped (ha) on One

Fully Charged Battery
(Optimal Conditions)

25 m 0.7 5

50 m 1.4 21

75 m 2.1 45

100 m 2.7 78

120 m 3.3 94

2.4. Photogrammetric Processing

The photogrammetric software package Pix4DMapper (version 4.5.2, Pix4D SA, Lau-
sanne, Switzerland, https://pix4d.com/, accessed on 1 August 2019) was used to process
the UAS data into a point cloud, digital surface model, and orthophoto mosaic. Pix4D
is available in both the desktop and cloud modules and has a fully automated workflow
for orthophoto generation and surface modeling which is flexible and scalable. The pro-
cess for generating the UAS products first starts with orientation and alignment of all

https://pix4d.com/


Drones 2023, 7, 221 7 of 13

images using the EXIF header geotagged image information and then advanced bundle
block adjustment (position and orientation of each image). As part of this process, an
algorithm searches for and matches millions of image features (known as “key points”)
between overlapping images and calculates each point’s three-dimensional coordinates.
These key points (sometimes called the sparse point cloud) are used to fix the positions
and orientation of the camera at the time each image was taken. Once this is completed,
additional points are identified to create a dense point cloud. The resulting dense point
cloud is then used to create a digital surface model (DSM). Finally, the software uses the
DSM to project every pixel and generate the orthophoto, which is a planimetrically cor-
rected image with, ideally, all geometric distortions removed. The geometric correction
root mean square error (RMSE) is reported in Table 1. It is important to note that without
high-precision GPS correction (either Real-Time Kinematic (RTK) or Post-Process Kinematic
(PPK)), the geometric accuracy of the resulting orthomosaic using the onboard GPS is
typically between 2 and 5 m horizontally (depending on the UAS model used). When
conducting change detection between image collection dates, it is important to align the
pixels using RTK or PPK methods or by using Ground Control Points (GCPs) based on
accuracy requirements. If the processing of the orthomosaic fails, it is typically the result
of low key point generation within overlapping images. This can be due to insufficient
overlap, low texture of the seabed, or poor image quality, such as image blur (shutter speed
too slow), which can be due to environmental variables such as sunglint or wave action.

2.5. eCognition Segmentation

An Object-based Image Analysis (OBIA) segmentation was applied to all resulting
RGB orthophoto mosaics using Trimble eCognition v9.5 software. The derived objects rep-
resent pixels of similar spectral value ranges and are treated as entities. A multiresolution
segmentation was applied to the orthophoto mosaics using a double-layer weight assigned
to the blue and green channels of the RGB image and blue/green ratio layer (due to the
deeper water penetrating characteristics) as well as the following parameters: scale: 60,
shape: 0.1, compactness: 0.5. The scale parameter guides the size of the objects and limits
the level of heterogeneity. The smaller the number, the smaller the size of the objects. Seg-
mentation works by identifying single image objects of one pixel in size and merging them
with their neighbors, based on relative homogeneity criteria. This criterion is a combination
of spectral and shape properties. A higher shape criterion value means less value will be
placed on color (i.e., spectral properties) during segmentation and a higher compactness
criterion value will result in more compactness of the objects after segmentation. The scale,
shape, and compactness parameters were determined by experimenting with different
values until coral colonies appeared to be well segmented in the UAS imagery. While
eCognition also has a classification ability, due to the small spatial extent of the study area
and relative ease of manually identifying taxa of interest, only the software’s segmentation
ability was employed.

2.6. Manual Classification of Segmented Polygons

Local ecological knowledge (LEK), largely understood as the unique perspectives and
knowledge held by groups of people regarding their local ecosystems, was provided by FoH
staff integral to both our manual classification and accuracy assessment process [36]. Once
the image objects were derived from the high-resolution orthoimage, FoH staff assisted a
non-FoH-affiliated individual by showing areas within the aerial imagery where there were
GPS ground-truthed points where taxa of interest were initially outplanted. These examples
of each taxon from the aerial view was instrumental in helping the outside individual acting
as classifier to identify key detectable features of each coral taxon discernable from UAS
imagery. These reef features were distinguished based on their unique color, shape, and
pattern. From there, the individual classifying the imagery did so independently, without
input from FoH staff. The manual classification process was conducted using Quantum
GIS open-source software [37]. Classes used in the manual classification solely focused on
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the taxa of interest, with APRO, ACER, and APAL representing A. prolifera, A. cervicornis,
and A. palmata, and with other benthic structure unquantified. Classified objects of each
species were then used to calculate the area in square meters, using the area calculation
functionality in QGIS.

2.7. Accuracy Assessment

LEK has been shown to effectively integrate with remote sensing accuracy assessments,
with LEK being used to verify species identifications utilizing the unique insights provided
by those with expert in situ knowledge [20]. Within Caribbean marine planning, LEK
has been widely utilized in the geospatial process via participatory mapping and the
integration of local stakeholder knowledge to inform and validate final results [38]. Indeed,
by integrating LEK within a more traditional geospatial methodology, including data
collection, analysis, and accuracy assessments, more nuanced and customized ecological
monitoring programs can be crafted [18]. Coupling UAS technology with LEK has primarily
focused on terrestrial applications, with accuracy assessment through LEK proving as
accurate as those gathered by professional scientists, but with lower operational costs
and more detailed, nuanced perspectives [39,40]. Likewise, ocean- and coral-reef-focused
monitoring can improve when combined with the perspectives of local experts to improve
monitoring efforts and create more effective and sustainable approaches by combining
methodologies [41].

In our study, FoH staff provided LEK through their experience working on the reef,
which was used to qualitatively review and validate the resulting classification conducted
by the independent classifier. FoH staff drew upon a vast amount of knowledge regarding
LBCNP to review and validate the outside classification, as FoH staff have monitored all
outplants in water at LBCNP monthly from 2006 to the present. In addition, FoH monitors
all outplants in situ using cameras every 1–2 months. Every outplant is recorded with the
date of outplanting, species, source, number of outplants, and subsites, complete with GPS
coordinates.

In parallel to the qualitative, LEK-led accuracy assessment, the independent individual
who conducted the manual classification also completed an additional accuracy assessment
using a random stratified point sample that consisted of 100 sampling points total per
imagery dataset (2019, 2020), randomly placed across the one-hectare study area, each
a minimum distance of 1 m apart. Classes used for the accuracy assessment included
separate classes for each taxon of interest, and an additional class for other taxa including a
non-coral benthic structure.

A traditional field accuracy assessment was not conducted due to existing FoH in situ
monitoring schemes, in addition to imagery providing sufficiently high spatial resolution.
At 1.8 cm resolution, the UAS imagery provided the required detail to identify each taxon
of interest, which had distinctive features that were easily detectable. This is the first
method that has allowed quantification of the entirety of replenished reefs at LBCNP,
detecting annual changes from natural spread, and verifying appropriate coral selection.
This approach has been successfully demonstrated for small restoration areas, but for larger
reef tracts deep learning methods may be applied using trained libraries to automatically
identify the features of interest [42,43].

3. Results
3.1. Coral Cover Quantification

As the acquired UAS imagery had a spatial resolution of 1.8 cm, we were able to
identify individual species and quantify coral cover for each species for both the 2019 and
2020 datasets (Figure 4). Each species had unique spatial attributes (e.g., color, tone, texture,
and shape) that were easily discernable from an aerial perspective, making the classification
and validation a simple process with the aid of local ecological insight and input from
FoH staff. A. cervicornis was demonstrated to be the dominant coral species with cover
throughout the caye, with A. prolifera and A. palmata represented in only a few colonies.
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The results from the accuracy assessment show an overall 98% accuracy for 2019 and 100%
accuracy for 2020, derived from the random point sample.
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3.2. LBCNP Change Detection, 2019–2020

The classification of each taxon and calculation of each taxon’s spatial extent permitted
the successful quantification of spatial changes in coral cover from 2019 to 2020 (Figure 5).
A. cervicornis was the most abundant species and represented the most change in calculated
coral cover, with positive one-year growth (Table 3). The results demonstrated that A.
cervicornis accounted for the entirety of positive calculated growth change within LBCNP,
with overall losses by the other two taxa. Thus, A. cervicornis overcame the losses by the
other two taxa to result in 157.46 new square meters of coral growth on the caye.

Table 3. Coral density in Laughing Bird Caye National Park from 2019 to 2020.

Species 2019 m2 2020 m2 Percent Change

Acropora cervicornis 1938.01 2268.43 +17%
Acropora palmata 151.7 90.30 −40%
Acropora prolifera 52.87 41.91 −21%

TOTAL 2142.58 2400.64 +12%
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Figure 5. Change detection of three acroporid coral species in LBCNP from 2019 to 2020 based on
image segmentation and manual classification of the derived objects.

4. Discussion

UAS imagery allowed FoH to quantify the spatial extent of three shallow replenished
acroporid coral species for the first time at LBCNP. Due to the success of these results,
ongoing mapping of coral restoration sites using a UAS is currently being applied to multi-
ple replenished shallow sites across Belize on an annual basis for quantifying the change
in coral cover. Additionally, FoH is mapping several natural, wild A. cervicornis stands
in southern Belize to detect changes each year and compare the results with replenished
sites. At one known A. cervicornis stand near Loggerhead Caye, a new A. prolifera stand
of significant size (approximately 50 m2) was discovered when the entire patch reef was
imaged and classified. Subsequent genetic analyses revealed that it is an A. prolifera genet
distinct from the others in the FoH gene banks (nurseries and outplants sites), adding to
the overall genetic diversity of the replenished reef sites in southern Belize.

One of FoH’s short-term goals was to answer the question, “How much coral reef has
been restored at LBCNP?” which previously was answered qualitatively. A longer-term
goal, relevant for shallow reef restoration, is determining the minimum number and density
of outplants needed to establish a self-replicating population. Using long-term annual
datasets with this method documents the natural spread of these branching coral taxa and
verifies both the site and coral selection process utilized. The methodological framework
utilizing UAS technology and LEK is proving essential for FoH to address both these long-
and short-term objectives. This method may be applicable to restoration practitioners
working on shallow reef systems both regionally and globally as a means of (1) mapping
source/donor corals, (2) mapping resilient reefs before/after bleaching/disease/storm
events, (3) quantifying larger scales of replenishment work, and (4) monitoring change
detection of replenished sites as a means of documenting success (or failure). FoH will



Drones 2023, 7, 221 11 of 13

continue using this methodology annually in its monitoring programs to detect reef re-
plenishment. Quantifying restoration efforts through annual, long-term monitoring could
provide additional insight into coral restoration best practices. Since acroporids thrive
in shallow reefs and can be detected using UAS techniques, it is hoped that these re-
sults encourage more practitioners to work in these corals’ preferred depth ranges, where
appropriate.

One of the main limitations in applying this approach is the depth of the feature to
be detected. Successful recognition of coral taxa using UAS imagery typically occurs in
clear water columns at depths of <~3 m. Other caveats include the collection of UAS
imagery during periods of calm sea conditions and low sun angles (i.e., minimal sunglint)
in order to acquire optimal detail in the imagery. The process involves investment in a
suitable UAS data collection platform, post-processing photogrammetry software, and
local capacity building and data management to maintain a long-term monitoring program.
Based on the knowledge that the top 1 m of reef (reef crest) provides the majority of
shoreline protection [44], our results may encourage coral restoration practitioners to invest
in monitoring corals at these shallow depths (1–3 m), when and where applicable. Other
limits to this approach include the availability of local expertise to provide in situ insight,
as well as the capacity to fund UAS missions and their associated costs.

5. Conclusions

While UASs have proven heavily effective in terrestrial environmental sectors, there is
a growing need for integrating monitoring protocols within benthic restoration programs
to increase the resiliency of long-term goals [45,46]. A UAS coupled with LEK provides
a unique opportunity to train and diversify the participation of local stakeholders in the
management and monitoring of restoration programs. This may lead to more resilient
and adaptive management actions due to the diverse voices represented within these
programs [27]. Coupling UAS and LEK provides a more nuanced method of monitoring to
establish an evidence base for optimizing the practice, enabling practitioners to identify
the techniques and processes that work well within their study area and to understand the
impacts of ecological intervention.
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